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Abstract—In systems with a high penetration of wind power
generation, the precision of the forecasts is a critical input
for the electricity dispatch planning. In this paper, we present
the methodology that has been used to implement a complete
update of the wind power forecast model in Uruguay. The
new model increases the precision of the forecasts both in
low and high power scenarios. It allows to perform a more
efficient short-term electricity dispatch, improving the resource
valuation, the inter-systems energy exchanges and the prevision
of the wholesale electricity market spot price. According to the
simulations performed, the new model increase the precision of
wind power forecasts between 7% and 32%. The model is on
its production phase and their results can be accessed through
pronos.adme.com.uy/svg and latorrex.adme.com.uy/vates.

Index Terms—renewable energy systems, forecasting, wind
energy, , neural networks, wind turbine power curve.

I. INTRODUCTION
A. Background

he Uruguayan interconnected electricity system has a

total installed capacity of around 4900 MW, with over
1500 MW corresponding to hydroelectric power and over 1500
MW to wind power. From 2018 to 2022, the participation of
wind energy in the total electricity mix ranged from 33.6% to
as high as 45%.

The Independent System Operator (ADME) manages the
economic dispatch of the Uruguayan electricity market, among
other objectives. To do so, ADME relies on power production
forecasts for the most crucial variables.

To understand the relevance of wind power resource avail-
ability predictions, the following hypothesis must be taken into
account. First, the variables involved in hydraulic resource
availability have a long-term perspective, spanning several
years [1], whereas wind speed exhibits much higher-frequency
patterns on a daily and weekly basis [2]. Second, wind power
generation in Uruguay operates under take-or-pay contracts,
which means it is not considered as an additional cost in a
marginalist approach to resource optimization.

ADME: Administraciéon del Mercado Eléctrico, Uruguay.
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B. Motivation

In this context, the most significant input to the determina-
tion of the cost-to-go, considering that the operation of the sys-
tem is optimized through Stochastic Dynamic Programming
[3], are the mid and long-term (ranging from three months to
three years) estimates of available hydroelectric power.

A precise forecast of the short-term wind power, provides
useful information for the decisions regarding the startup and
shutdown process of some thermal generation units, which
take a considerable time to complete. Such forecasts reduce
the error of the cost-to-go function, allowing to optimize the
international energy exchanges. The forecasts are a critical
input for the energy dispatch, reducing risks and increasing
the efficiency of the system.

A deviation between wind power measure and forecast was
observed on a frequent basis, which motivated an investigation
to determine the cause. The deviation was mainly observed on
the upper and lower bounds, which led to underestimation of
high power and overestimation of low power.

Based on that observation, an exploratory analysis of the
wind speed forecast was performed, determining that there
were systematic biases between wind speed measures and
forecasts.

C. Objectives

In this work, we present a novel strategy for the forecasting
of short-term wind power, and the results obtained from
this new strategy. This forecasting strategy has already been
implemented and is currently being used by ADME. These
are a significant upgrade from the previous models and have
increased forecast precision in conditions of both high and low
wind power [4] [5].

II. METHODOLOGY

Regarding the last observation, we decided to generate a
two-stage model. The first stage is called Wind-Wind Cor-
rection Model (WWCM), and it implements a artificial neural



network (ANN) to correct the wind speed forecast. The second
stage is called Wind-Power Conversion Model (WPCM), and
it consists of fitting a sigmoid-like exponential function to
convert the wind speed forecast to electrical power forecast.

The model was trained using wind speed, wind direction and
solar radiation as inputs, considering the information available
for 2019, 2020 and 2021, both from real measurements as
well as from previous forecasting models. The curve is also
adjusted with the same data, and validated with same valida-
tion set as the ANN. Each wind farm was calibrated indepen-
dently, which means that more than 35 different models were
implemented. Fig. 1 shows the general diagram of the model
implemented.

A. Data

The data used for this study included forecasts and measures
at 35 wind farms in Uruguay from January 2019 to February
2022. Measured variables were electric power production,
wind speed and direction. Forecasts variables were global
horizontal irradiance, wind speed and direction. The source
of the forecasts considered was the package wind energy of
the company MeteoBlue [6].

From the exploratory analysis of the data, some patterns in
abnormal data and outliers were detected. Most of those were
assigned to constant power values on a wide ranges of wind
speed, which can be explained due to uninformed maintenance
or dispatch curtailments. Other sources of unreliable data
include instrumental or communication failures. In order to
detect and remove the abnormal data and outliers, the raw
data must be filtered.

During the filtering process implemented, the data is sorted
in groups by power (MW), calculating the mean (u) and
standard deviation (o) for each group. Values outside the
[¢ & 20] range are discarded. This process must be done in
an iterative manner, until the data set obtained is considered
acceptable to begin with the calibration of the models. Fig. 2
shows an example of the data before and after applying the
filter.

B. Two-Stage Model

During design, a single-stage model that converts directly
the wind speed forecast to electric power was considered but
dismissed due to the inconvenience given by calibrating using
non-measured data.

That is, electric power measure would be used as the
output from a wind speed forecast input, even if that speed
forecasted could be different to the actual speed. This kind
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Fig. 1: Global diagram of the model implemented
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Fig. 2: Data cleansing

of schema tends to have a pathological behaviour, where
predictions avoid extreme values. Furthermore, any method-
ological change performed by the company that provides
the meteorological forecasts, would imply a complete re-
calibration of the whole model, for all the wind farms.

Therefore, the aforementioned two-stage model was con-
ceived. At stage one, a wind speed correction is performed,
and at stage two, power is predicted using the wind speed
obtained from stage one.

Here, a remarkable advantage arises from building a robust
wind-to-power model of each wind farm as a whole, which
is independent of the source of wind speed forecast and its
provider.

C. Wind-Wind Correction Model

The Wind-Wind Correction Model (WWCM) aims to cor-
rect the bias detected in the forecasted wind velocity. On
an initial stage, four inputs were considered for the ANN:
wind speed, solar radiation (GHI), temperature and air density.
A similar approach was studied on [7], where ANN were
evaluated for the wind-to-power turbine modelling. During
the tests performed, it was determined that the variables
Temperature and Air Density had almost no effect on the
results. Therefore, those variables were not considered in the
final version of the model.

In this implementation, the WWCM includes 72 directional
networks, where each one corresponds to a 7° sector of wind
direction, and the sectors are equally spaced 5°. Other imple-
mentations could be done with different spacing and different
overlap. For the training of the network, the forecasted wind
speed and solar radiation are the inputs, and the measured
wind speed is considered as ground truth.

The WWCM training is divided in two steps. As the first
step, an initial network is trained using data from all the
directions. The parameters obtained from that initial training
are used as seeds for the second step. In the second step,
the directional individual networks are trained using data only
from the corresponding wind directions.

During the second step, a regularization parameter must be
used to penalise the differences between the weights and biases
of adjacent networks. This regularization solves the problems
that arise when a sector has a small amount of samples. On
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Fig. 3: Wind-Wind Correction Model

each wind farm, there is a prevailing wind direction, and the
position of the wind turbines is determined based on that
direction. Therefore, having an imbalanced amount of samples
along the direction sectors is intrinsic to behaviour of wind and
the wind farms characteristics.

Fig. 3 and table I, show the improvement achieved after
processing the raw data through the WWCM.

TABLE I: WWCM against measurements - Residual Variance

Model Test Data  Overall Data
Raw Forecast 58.4 58.4
Global Network 3.14 3.54
Directional Network 2.72 3.97

1) Regularization on WWCM: In order to prevent over-
fitting, a regularization technique is used. In this case, is
implemented through a parameter that penalises the differences
between adjacent networks. The aim of this penalty is to avoid
issues that arise when a network is trained using a small
dataset, which is an intrinsic problem when working with wind
speed; every location has a prevailing wind direction and thus
there are directions that are secondary and have a small dataset.
An example of this problem is shown in Fig. 4. It shows
a 6-year dataset, with directions that have more than 12000
samples and directions with nearly 1000. Therefore, there is
a 12-times difference in the number of samples between the
most and the least frequent direction.

Using shallow neural networks and using few input param-
eters act as a regularization on its own. The results shown
correspond to an implementation with a one neuron network
for each direction, since the deviation between the wind
forecasts and the measures were considered linear. As is, the
method has no restrictions with the architecture of the neural
network to be used.

D. Wind-Power Conversion Model

The Wind-Power Conversion Model (WPCM) developed is
an electro-mechanical representation of the overall response
of the of each wind farm to the wind speed and direction, as
the sum of the production of all its turbines. It consists on
a set of sigmoid-like exponential function, bounded between
0 MW and the nominal power of the wind farm. The model
is calibrated for each wind farm independently, and for each
wind direction sector corresponding to the ones in WWCM.
The function used for the calibration is shown on (1). The
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Fig. 4: Example of amount of samples per direction for one
of the studied wind farms.
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Fig. 5: Wind-Power Conversion Model

function is similar to several studied by Wang et al. [8], it has
several advantages over classical sigmoid including that it can
generalize a wide range of functions.

An example of the wind to power curve obtained for one
of the studied wind farms is presented in Fig. 5.

_ (v=vo)?

Plvy=A-e B =C (1)

Where v stands for wind velocity and P for power. The other
parameters are calculated using the least squares method.
ITI. RESULTS

A. Comparison to previous model

Table II shows the difference between the previous and the
new model, using the Mean Absolute Error as the comparison
metric.

TABLE II: Mean Absolute Error of the models evaluated

Overall High Power Low Power

Previous Model 151 MWh 89 MWh 157 MWh

New Model 110 MWh 83 MWh 106 MWh
Improvement 27 % 7 % 32 %
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Fig. 6 shows the histogram of the error for both the previous
and the current model. As it can be seen, the orange (current)
shows a displacement to the left, with respect to the blue
(previous); which means that the error decreases.

A qualitative comparison can be seen in Fig. 7, which shows
the outputs of the models for the same week.

B. Applied to the weekly dispatch programming

The methodology presented in this paper is currently being
used by ADME as source of forecasts for the availability
of wind power resources for the weekly programming of
electricity dispatch. For this purpose, ADME runs in an hourly
manner an update an optimization of the dispatch for the the
week ahead using the software Vates [4].

Subplots on Fig. 8 show the electricity dispatch estimated
by Vates and the executed dispatch for the week of the 8th of
July of 2023 respectively.

IV. CONCLUSION

In this paper, novel methodology for wind power forecasting
is introduced. The results of the implementation presented
show remarkable performance improvements over the classic
sigmoid fitting approach, achieveing 27% reduction in mean
absolute error (MAE) for the Uruguayan interconnected sys-
tem, outperforming the classic method by 7% in the low power
step and 32% in the high power step.

A key advantage of the proposed methodology is its com-
putational efficiency compared to other methods, such as deep
neural networks, making it a more resource-efficient solution
for wind power forecasting.

Furthermore, this methodology has shown effectiveness to
predict events near the power bounds, whether they are close to
zero or the maximum power capacity. This ability to forecast
events close to the bounds with precision is a valuable asset
for efficient power management and decision-making.

The uneven distribution is intrinsic to the problem. To
address this, equal-sized bins in degrees were used. This
approach implies extrapolating the parameters of the most
densely populated bins to less populated ones, assuming
similar behavior. Therefore, this method relies heavily on the
hypothesis that the least populated bins behave like the most
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Fig. 7: Comparison between new and previous model

populated ones. If this hypothesis is not met, then the model
would lead to imprecise results.

Finally, the proposed methodology exhibits a risk-adverse
characteristic given by the two-stages algorithm. By employing
a two-step approach, the methodology segregates one model
for correcting the meteorological forecast information and
another for the wind farm model. This segregation allows users
to maintain the same model for the wind-speed vs wind-power
curve, even when changing meteorological services, just by
training the first stage again. The capacity to interchange me-
teorological services without modifying the underlying wind
speed and power curve model ensures greater stability and
adaptability in wind power forecasting, reducing uncertainties
and enhancing the system’s overall reliability.

V. FUTURE WORKS

Considering the notable advancements made in the current
work related to short-term electricity dispatch, it would be
interesting to continue expanding the application of this model
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to the other programming tools utilized by ADME, especially
in the context of mid-term dispatch planning.

After validating the neural networks’ ability to rectify
erroneous data, it is might be possible to advance the initial
phase of the methodology, with a specific focus on conducting
tests with more complex network architectures.

Despite not being a direct component of the objectives for
a potential follow-up project, it is considered important to
implement stricter data quality control measures for wind farm
operators. This is because a significant portion of the data that
was removed during the data cleansing process stemmed from
instrumental or communication failures.

DISCLAIMER

The content of this article is entirely the responsibility of
its authors, and does not necessarily reflect the position of the
institutions of which they are part of.
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